Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://dspace.uzhnu.edu.ua/jspui/handle/lib/66552
Название: Applying a Recurrent Neural Network-Based Deep Learning Model for Gene Expression Data Classification
Авторы: Babichev, Sergii
Liakh, Igor
Kalinina, Irina
Ключевые слова: Applying a Recurrent Neural Network-Based Deep Learning Model for Gene Expression Data Classification, gene expression profiles; recurrent neural network; deep learning; classification quality criteria; grid search algorithm; cancer disease
Дата публикации: 29-окт-2023
Издательство: MDPI
Библиографическое описание: The importance of gene expression data processing in solving the classification task is determined by its ability to discern intricate patterns and relationships within genetic information, enabling the precise categorization and understanding of various gene expression profiles and their consequential impacts on biological processes and traits. In this study, we investigated various architectures and types of recurrent neural networks focusing on gene expression data. The effectiveness of the appropriate model was evaluated using various classification quality criteria based on type 1 and type 2 errors. Moreover, we calculated the integrated F1-score index using the Harrington desirability method, the value of which allowed us to improve the objectivity of the decision making when model effectiveness was evaluated. The final decision regarding model effectiveness was made based on a comprehensive classification quality criterion, which was calculated as the weighted sum of classification accuracy, integrated F1-score index, and loss function values. The simulation results show higher appeal of a single-layer GRU recurrent network with 75 neurons in the recurrent layer. We also compared convolutional and recurrent neural networks on gene expression data classification. Although convolutional neural networks showcase benefits in terms of loss function value and training time, a comparative analysis revealed that in terms of classification accuracy calculated on the test data subset, the GRU neural network model is slightly better than the CNN and LSTM models. The classification accuracy when using the GRU network was 97.2%; in other cases, it was 97.1%. In the first case, 954 out of 981 objects were correctly identified. In other cases, 952 objects were correctly identified. Keywords: gene expression profiles; recurrent neural network; deep learning; classification quality criteria; grid search algorithm; cancer disease
Серия/номер: Applied Sciences;13(21)
Краткий осмотр (реферат): The importance of gene expression data processing in solving the classification task is determined by its ability to discern intricate patterns and relationships within genetic information, enabling the precise categorization and understanding of various gene expression profiles and their consequential impacts on biological processes and traits. In this study, we investigated various architectures and types of recurrent neural networks focusing on gene expression data. The effectiveness of the appropriate model was evaluated using various classification quality criteria based on type 1 and type 2 errors. Moreover, we calculated the integrated F1-score index using the Harrington desirability method, the value of which allowed us to improve the objectivity of the decision making when model effectiveness was evaluated. The final decision regarding model effectiveness was made based on a comprehensive classification quality criterion, which was calculated as the weighted sum of classification accuracy, integrated F1-score index, and loss function values. The simulation results show higher appeal of a single-layer GRU recurrent network with 75 neurons in the recurrent layer. We also compared convolutional and recurrent neural networks on gene expression data classification. Although convolutional neural networks showcase benefits in terms of loss function value and training time, a comparative analysis revealed that in terms of classification accuracy calculated on the test data subset, the GRU neural network model is slightly better than the CNN and LSTM models. The classification accuracy when using the GRU network was 97.2%; in other cases, it was 97.1%. In the first case, 954 out of 981 objects were correctly identified. In other cases, 952 objects were correctly identified
Описание: The importance of gene expression data processing in solving the classification task is determined by its ability to discern intricate patterns and relationships within genetic information, enabling the precise categorization and understanding of various gene expression profiles and their consequential impacts on biological processes and traits. In this study, we investigated various architectures and types of recurrent neural networks focusing on gene expression data. The effectiveness of the appropriate model was evaluated using various classification quality criteria based on type 1 and type 2 errors. Moreover, we calculated the integrated F1-score index using the Harrington desirability method, the value of which allowed us to improve the objectivity of the decision making when model effectiveness was evaluated. The final decision regarding model effectiveness was made based on a comprehensive classification quality criterion, which was calculated as the weighted sum of classification accuracy, integrated F1-score index, and loss function values. The simulation results show higher appeal of a single-layer GRU recurrent network with 75 neurons in the recurrent layer. We also compared convolutional and recurrent neural networks on gene expression data classification. Although convolutional neural networks showcase benefits in terms of loss function value and training time, a comparative analysis revealed that in terms of classification accuracy calculated on the test data subset, the GRU neural network model is slightly better than the CNN and LSTM models. The classification accuracy when using the GRU network was 97.2%; in other cases, it was 97.1%. In the first case, 954 out of 981 objects were correctly identified. In other cases, 952 objects were correctly identified
Тип: Text
Тип публикации: Стаття
URI (Унифицированный идентификатор ресурса): https://dspace.uzhnu.edu.ua/jspui/handle/lib/66552
ISSN: 2076-3417
Располагается в коллекциях:Наукові публікації кафедри інформатики та фізико-математичних дисциплін

Файлы этого ресурса:
Файл Описание РазмерФормат 
applsci-13-11823.pdfStattja1.92 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.