Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.uzhnu.edu.ua/jspui/handle/lib/66561
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorYasinska-Damri, Lyudmyla-
dc.contributor.authorLiakh, Igor-
dc.contributor.authorBabichev, Sergii-
dc.contributor.authorDurnyak, Bohdan-
dc.date.accessioned2024-10-31T11:50:21Z-
dc.date.available2024-10-31T11:50:21Z-
dc.date.issued2021-11-21-
dc.identifier.citationGene expression data processing in order to develop the systems of complex diseases diagnostic or/and gene regulatory networks (GRN) reconstruction is one of the actual direction of modern bioinformatics. One of the important stages of this problem solving is an extraction of mutually correlated gene expression profiles (GEP) considering the used proximity metric. Within the framework of our research, we evaluate the complex metric of GEP proximity calculated as the combination of modified mutual information criterion and Pearson's chi-squared test using OPTICS clustering algorithm implemented using principles of the objective clustering inductive technique (OCIT). The examined objects classification accuracy was used as the main criterion to access the applied method effectiveness. The simulation results have shown that the proposed technique allows us to form an optimal GEP cluster structure in terms of maximum values of the patterns classification accuracy quality criterion.uk
dc.identifier.issn1613-0073-
dc.identifier.urihttps://dspace.uzhnu.edu.ua/jspui/handle/lib/66561-
dc.descriptionGene expression data processing in order to develop the systems of complex diseases diagnostic or/and gene regulatory networks (GRN) reconstruction is one of the actual direction of modern bioinformatics. One of the important stages of this problem solving is an extraction of mutually correlated gene expression profiles (GEP) considering the used proximity metric. Within the framework of our research, we evaluate the complex metric of GEP proximity calculated as the combination of modified mutual information criterion and Pearson's chi-squared test using OPTICS clustering algorithm implemented using principles of the objective clustering inductive technique (OCIT). The examined objects classification accuracy was used as the main criterion to access the applied method effectiveness. The simulation results have shown that the proposed technique allows us to form an optimal GEP cluster structure in terms of maximum values of the patterns classification accuracy quality criterion.uk
dc.description.abstractGene expression data processing in order to develop the systems of complex diseases diagnostic or/and gene regulatory networks (GRN) reconstruction is one of the actual direction of modern bioinformatics. One of the important stages of this problem solving is an extraction of mutually correlated gene expression profiles (GEP) considering the used proximity metric. Within the framework of our research, we evaluate the complex metric of GEP proximity calculated as the combination of modified mutual information criterion and Pearson's chi-squared test using OPTICS clustering algorithm implemented using principles of the objective clustering inductive technique (OCIT). The examined objects classification accuracy was used as the main criterion to access the applied method effectiveness. The simulation results have shown that the proposed technique allows us to form an optimal GEP cluster structure in terms of maximum values of the patterns classification accuracy quality criterion.uk
dc.language.isoenuk
dc.publisherIDDMuk
dc.relation.ispartofseriesComputer Science, Biology;3038-
dc.subjectEvaluation of the Gene Expression Profiles Complex Proximity Metric Effectiveness Based on a Hybrid Technique of Gene Expression Data Extractionuk
dc.subjectGene expression profiles, proximity metrics, OPTICS clustering algorithm, gene expression profiles classification, inductive methods of objective clustering, clustering quality criteria, classification accuracyuk
dc.titleEvaluation of the Gene Expression Profiles Complex Proximity Metric Effectiveness Based on a Hybrid Technique of Gene Expression Data Extractionuk
dc.typeTextuk
dc.pubTypeТези до статтіuk
Розташовується у зібраннях:Наукові публікації кафедри інформатики та фізико-математичних дисциплін

Файли цього матеріалу:
Файл Опис РозмірФормат 
paper10.pdfStattja1.76 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.