Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
https://dspace.uzhnu.edu.ua/jspui/handle/lib/66561
Название: | Evaluation of the Gene Expression Profiles Complex Proximity Metric Effectiveness Based on a Hybrid Technique of Gene Expression Data Extraction |
Авторы: | Yasinska-Damri, Lyudmyla Liakh, Igor Babichev, Sergii Durnyak, Bohdan |
Ключевые слова: | Evaluation of the Gene Expression Profiles Complex Proximity Metric Effectiveness Based on a Hybrid Technique of Gene Expression Data Extraction, Gene expression profiles, proximity metrics, OPTICS clustering algorithm, gene expression profiles classification, inductive methods of objective clustering, clustering quality criteria, classification accuracy |
Дата публикации: | 21-ноя-2021 |
Издательство: | IDDM |
Библиографическое описание: | Gene expression data processing in order to develop the systems of complex diseases diagnostic or/and gene regulatory networks (GRN) reconstruction is one of the actual direction of modern bioinformatics. One of the important stages of this problem solving is an extraction of mutually correlated gene expression profiles (GEP) considering the used proximity metric. Within the framework of our research, we evaluate the complex metric of GEP proximity calculated as the combination of modified mutual information criterion and Pearson's chi-squared test using OPTICS clustering algorithm implemented using principles of the objective clustering inductive technique (OCIT). The examined objects classification accuracy was used as the main criterion to access the applied method effectiveness. The simulation results have shown that the proposed technique allows us to form an optimal GEP cluster structure in terms of maximum values of the patterns classification accuracy quality criterion. |
Серия/номер: | Computer Science, Biology;3038 |
Краткий осмотр (реферат): | Gene expression data processing in order to develop the systems of complex diseases diagnostic or/and gene regulatory networks (GRN) reconstruction is one of the actual direction of modern bioinformatics. One of the important stages of this problem solving is an extraction of mutually correlated gene expression profiles (GEP) considering the used proximity metric. Within the framework of our research, we evaluate the complex metric of GEP proximity calculated as the combination of modified mutual information criterion and Pearson's chi-squared test using OPTICS clustering algorithm implemented using principles of the objective clustering inductive technique (OCIT). The examined objects classification accuracy was used as the main criterion to access the applied method effectiveness. The simulation results have shown that the proposed technique allows us to form an optimal GEP cluster structure in terms of maximum values of the patterns classification accuracy quality criterion. |
Описание: | Gene expression data processing in order to develop the systems of complex diseases diagnostic or/and gene regulatory networks (GRN) reconstruction is one of the actual direction of modern bioinformatics. One of the important stages of this problem solving is an extraction of mutually correlated gene expression profiles (GEP) considering the used proximity metric. Within the framework of our research, we evaluate the complex metric of GEP proximity calculated as the combination of modified mutual information criterion and Pearson's chi-squared test using OPTICS clustering algorithm implemented using principles of the objective clustering inductive technique (OCIT). The examined objects classification accuracy was used as the main criterion to access the applied method effectiveness. The simulation results have shown that the proposed technique allows us to form an optimal GEP cluster structure in terms of maximum values of the patterns classification accuracy quality criterion. |
Тип: | Text |
Тип публикации: | Тези до статті |
URI (Унифицированный идентификатор ресурса): | https://dspace.uzhnu.edu.ua/jspui/handle/lib/66561 |
ISSN: | 1613-0073 |
Располагается в коллекциях: | Наукові публікації кафедри інформатики та фізико-математичних дисциплін |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
paper10.pdf | Stattja | 1.76 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.