Please use this identifier to cite or link to this item: https://dspace.uzhnu.edu.ua/jspui/handle/lib/71481
Title: Integrating machine learning and IoT into apiary management to optimize bee health and production
Authors: Вацкель, Володимир Юрійович
Білощицький, Андрій Олександрович
Неффтісов, Олександр
Кучанський, Олександр Юрійович
Андрашко, Юрій Васильович
Білощицька, Світлана
Саченко, Ілля
Keywords: beekeeping, machine learning, Internet of Things, temperature control, pulse width modulations, unstainable agriculture, energy efficiency
Issue Date: 2024
Citation: Vatskel V., Biloshchytskyi A., Neftissov A., Kuchanskyi O., Andrashko Y., Biloshchytska S., Sachenko I. Integrating machine learning and IoT into apiary management to optimize bee health and production. Procedia Computer Science. 2024. Vol. 241. P. 494-500. DOI: https://doi.org/10.1016/j.procs.2024.08.070
Abstract: This article discusses integrating machine learning and IoT technologies into bee apiary management systems. The research aims to optimize bee conditions, improve their health and increase honey production. Using machine learning, large amounts of data collected by hive sensors are analyzed to predict and prevent various bee health problems effectively. Particular attention is paid to methods of controlling temperature in hives through pulse-width modulation technology, which provides accurate and energy-efficient regulation of temperature conditions. A method for predicting temperature in hives for effective apiary management is also proposed.
Type: Text
Publication type: Стаття
URI: https://dspace.uzhnu.edu.ua/jspui/handle/lib/71481
Appears in Collections:Наукові публікації кафедри cистемного аналізу та теорії оптимізації

Files in This Item:
File Description SizeFormat 
Procedia Computer Science.pdf2.62 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.