Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.uzhnu.edu.ua/jspui/handle/lib/51222
Назва: Обчислювальна стійкість інтерполяційного методу мажоритарного типу розв’язування задачі Коші для систем звичайних диференціальних рівнянь
Автори: Глебена, Мирослава Іванівна
Дата публікації: 2014
Видавництво: УжНУ "Говерла"
Бібліографічний опис: Глебена, М. І. Обчислювальна стійкість інтерполяційного методу мажоритарного типу розв’язування задачі Коші для систем звичайних диференціальних рівнянь / М. І. Глебена // Науковий вісник Ужгородського університету : серія : Математика і інформатика / редкол.: В.В.Маринець (гол. ред.), І.І.Король, М.Д.Бабич, О.Ф.Волошин та ін. – Ужгород : Видавництво УжНУ "Говерла", 2014. – Вип. 25 Ч. 2. – С. 25–28. – Бібліогр. : с. 28 (6 назв). – Рез. англ., укр.
Короткий огляд (реферат): The calculation stability of numerical method of solving the Cauchy problem for system of ordinary differential equations is considered. The method is based on the approximation of subintegral fuпctions on the non-classical Newtonian majorants, constructed bу two points.
Розглядається обчислювальна стійкість чисельного методу розв'язування задачі Коші для систем звичайних диференціальних рівнянь, в основі якого лежить апроксимація підінте­гральних функцій некласичними мажорантами Ньютона, побудованими за двома точками.
Тип: Text
Тип публікації: Стаття
URI (Уніфікований ідентифікатор ресурсу): https://dspace.uzhnu.edu.ua/jspui/handle/lib/51222
Розташовується у зібраннях:Науковий вісник УжНУ Серія: Математика і інформатика. Випуск 25 №2 – 2014

Файли цього матеріалу:
Файл Опис РозмірФормат 
ОБЧИСЛЮВАЛЬНА СТІЙКІСТЬ.pdf3.36 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.